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Abstract 15 

Extreme weather events often trigger massive population displacement. A compounding factor 16 
is that the frequency and intensity of such events is affected by anthropogenic climate change. 17 
However, the effect of historical climate change on displacement risk has so far not been 18 
quantified. Here, we show how displacement can be partially attributed to climate change, 19 
using the example of the 2019 tropical cyclone Idai in Mozambique. We estimate the 20 
population exposed to flooding following Idai’s landfall, using a combination of storm surge 21 
modeling and flood depth estimation from remote sensing images, for factual (climate change) 22 
and counterfactual (no climate change) mean sea level and maximum wind speed conditions. 23 
We find that climate change has increased displacement risk from this event by approximately 24 
3.1 to 3.5%, corresponding to  16,000 - 17,000 additional displaced persons. Besides 25 
highlighting the significant effects on humanitarian conditions already imparted by climate 26 
change, our study provides a blueprint for event-based displacement attribution.   27 

1 Introduction 28 

Tropical cyclones (TCs) pose immense risks to coastal communities around the world. 29 
Between 1980 and 2021, an average of 45 TCs globally have been recorded per year, with 30 
the Philippines, China, Vietnam, USA and Mexico as the top-five most frequently exposed 31 
countries (Guha-Sapir et al., 2022). While related monetary losses are high due to the massive 32 
damages to housing and infrastructure, TCs also displace an average of 9.3 million people 33 
every year, with this hazard being responsible for 43% of all weather-related displacements 34 
(IDMC, 2022). Such forced displacements are associated with extensive human suffering, as 35 
well as substantial costs (e.g., for providing shelter or from loss of economic production) and 36 
often require international assistance for disaster relief funds and humanitarian response 37 
(Desai et al., 2021).  38 
 39 
At the same time, global climate change is expected to alter TC characteristics, resulting in an 40 
increase in overall TC intensity (maximum wind speed and precipitation) and hence in the 41 
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frequency of very intense TCs (category 4-5 on the Saffir-Simpson scale), fundamentally 42 
because of an increase in potential intensity due to warmer sea surface temperatures (SST)   43 
(Emanuel, 1987; Knutson et al., 2020). Rising sea levels, also driven by global warming, 44 
additionally compound coastal flood risk associated with TCs (e.g., Garner Andra J. et al., 45 
2017; Lin et al., 2012; Resio and Irish, 2016). Given that global mean surface air temperature 46 
and sea level have already risen substantially above pre-industrial conditions (by about 1.1°C 47 
and 0.20 m, respectively (Gulev et al., 2021)), it is likely that recent TC landfalls have caused 48 
more severe impacts than would be expected without climate change. However, the portion 49 
of TC-induced human displacements attributable to climate change has so far not been 50 
quantified.  51 
 52 
In this study, we address this research gap for the particular case of displacement triggered 53 
by TC Idai in 2019. We examine the floods in central Mozambique associated with TC Idai, 54 
considered to be “one of the Southern Hemisphere’s most devastating storms on record” 55 
(Warren, 2019). On the 14th of March, Idai made landfall near the densely populated port city 56 
of Beira, inhabited by more than 530,000 people (Figure 1). Alongside strong winds and 57 
extensive inland flooding caused by heavy rainfall, the cyclone also created an intense storm 58 
surge, leading to severe coastal flooding. In Mozambique alone, TC Idai claimed the lives of 59 
more than 600 people, and caused 478,000 internal displacements, as well as widespread 60 
structural damage totaling more than US$ 2.1 billion (Guha-Sapir et al., 2022; IDMC, 2022).  61 
 62 
Here, we investigate how the coastal flooding would have manifested in a counterfactual world 63 
without climate change, and consequently, how many of the observed human displacements 64 
from TC Idai can be linked to climate change. For the attribution of the impacts we follow the 65 
storyline approach introduced by Shepherd (Shepherd, 2016). To this end, we account for two 66 
known mechanisms through which global climate change could have affected coastal flood 67 
hazard: sea-level rise and amplification of storm intensity. We first estimate the influence of 68 
climate change on sea level and TC intensity in the South Indian Ocean. We employ a high-69 
resolution hydrodynamic flood model to simulate TC Idai’s peak coastal flood extent and 70 
depth, both under historical conditions and under counterfactual conditions with lower sea 71 
levels and lower maximum wind speed, corresponding to a world without climate change. We 72 
additionally use satellite imagery to account for inland (freshwater) flooding, and estimate the 73 
total number of people affected by flooding. We then model the number of displacements 74 
based on flood depth-specific vulnerability factors, and estimate the fraction of displacements 75 
that can be attributed to climate change by comparing results under factual vs. counterfactual 76 
conditions.  77 
 78 
We use an estimate of sea level rise (SLR) that attempts to separate natural variability in ice 79 
sheet and glacier mass balance and retain only the long-term trend induced by global warming 80 
(Strauss et al., 2021). Beyond this, however, our analysis is indifferent to whether the trends 81 
in sea level and TC intensity are anthropogenic or not. This is in line with the definition of 82 
impact attribution put forward by the Intergovernmental Panel on Climate Change (IPCC), 83 
where “changes in natural, human, or managed systems are attributed to [a] change in [a] 84 
climate-related system” (O’Neill et al., 2022). Such a question can be separated from the 85 
climate attribution question of whether the change in the climate-related system - here, sea 86 
level and TCs - is due to anthropogenic forcing. This separation allows us to focus on the link 87 
between climate change and displacement despite remaining uncertainty about the exact 88 
anthropogenic contribution. We will return to this issue below.  89 
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 90 

 91 
 92 
Figure 1: Trajectory of tropical cyclone Idai over the South Indian Ocean. Trajectory data 93 
is based on the IBTrACS database (Knapp et al., 2010). Mozambican administrative 94 
boundaries (GADM, 2018) in white; satellite image background by © Google Maps (Google 95 
Maps (a), 2022). Dates and tropical cyclone status adopted from Reliefweb (Reliefweb, 2019). 96 

2 Methods 97 

2.1 Coastal Flood Modeling 98 

The storm surge flood simulations are generated using the open-source geophysical flow 99 
solver GeoClaw (Mandli and Dawson, 2014). GeoClaw uses an efficient adaptive mesh 100 
refinement to model wind- and pressure-induced wave dynamics in the 2-dimensional depth-101 
averaged shallow water equations. The detailed model setup used here is described and 102 
evaluated by Vogt and colleagues (Vogt et al., 2022). 103 
 104 
As the factual input for GeoClaw, the TC track data from IBTrACS (Knapp et al., 2010) 105 
provided by the WMO Regional Specialised Meteorological Center at La Reunion (operated 106 
by MeteoFrance) is used. For the counterfactual scenarios with modified TC intensity, we 107 
multiplied all wind speed values along the track by a scalar factor of 0.9 (for a decrease of 108 
10% in intensity). The central pressure at each track position is increased by 0.1 times the 109 
difference between central pressure and environmental pressure. 110 
 111 
From the wind speed, pressure, and radius information provided along the TC track, GeoClaw 112 
derives surface wind speeds and air pressure at arbitrary locations in space and time using a 113 
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radially symmetric wind profile (Holland, 1980) combined with the influence from the storm’s 114 
translational speed. 115 
 116 
GeoClaw does not incorporate any tidal dynamics, nor meteorological forcings apart from the 117 
TC wind and pressure fields mentioned above. To account for the influence of astronomical 118 
tides, we configured GeoClaw to use an initial sea level according to gridded satellite altimetry 119 
for 2019 (CMEMS, 2021), optionally enhanced by the minimum, mean, or maximum simulated 120 
astronomical tides in the region of landfall according to the FES2014 global ocean tide atlas 121 
(Lyard et al., 2021). For the counterfactual sea level scenarios, the amount of sea level rise 122 
specified in the scenario description (between 6.5 and 17.0 cm) was subtracted from the initial 123 
sea level. 124 
 125 
The topographical input for GeoClaw is taken from digital elevation models. We used a 126 
combination of CoastalDEM 2.1 (Kulp and Strauss, 2021, 2018) in coastal areas, SRTM 15+ 127 
V2.3 (Tozer et al., 2019) over the open ocean and Multi-Error-Removed Improved-Terrain 128 
(MERIT) digital elevation model (DEM) (Yamazaki et al., 2019) everywhere else. All datasets 129 
are converted to the same geoidal vertical datum (EGM96) at a spatial resolution of 9 130 
arcseconds (approximately 300 m). 131 
 132 
Due to a lack of tide gauges in Mozambique, it was not possible to validate the performance 133 
of GeoClaw for TC Idai in the factual model runs. However, we compared the water levels at 134 
a virtual tide gauge station off the coast of Beira, where the highest impacts from TC Idai have 135 
been reported, with simulated water levels from the Global Tide and Surge Model (GTSM) 136 
(Dullaart et al., 2021; Muis et al., 2020), and found the best agreement of maximum surge 137 
heights for the GeoClaw run with the maximum astronomical tide assumption, closely followed 138 
by the run with no tidal adjustment (Supplementary Figure S1). 139 

2.2 Inland Flood Depth Estimation  140 

Gridded depth maximums for the flood event  (Supplementary Figure S2) were calculated 141 
using the Rolling HAND Inundation Corrected Depth Estimator (RICorDE) algorithm (Bryant 142 
et al., 2022) supplied with terrain data from the MERIT DEM project, permanent surface water 143 
data from the Joint Research Centre (JRC) Global Surface Water project (Pekel et al., 2016), 144 
and flood extents from the FloodScan product (Atmospheric and Environmental Research & 145 
African Risk Capacity, 2022). MERIT DEM provides a roughly 90 m resolution global layer 146 
derived from multiple space-based sensors to minimize elevation errors. The maximum water 147 
extent layer from JRC’s Global Surface Water project provides a roughly 30 m resolution 148 
global layer of locations detected as inundated on Landsat imagery (Wulder et al., 2016) from 149 
1984-2019 (Pekel et al., 2016). Observed flood extents for TC Idai were obtained from 150 
Atmospheric and Environmental Research & African Risk Capacity’s accumulated 2-tier 151 
standard flood extent depiction FloodScan product from 2019-03-01 to 2019-03-31, which has 152 
the same resolution as the MERIT DEM. Originally developed for applications in Africa, this 153 
FloodScan algorithm relies on satellite based low-resolution passive microwave data to 154 
estimate inundation areas. The algorithm was designed to minimize false-positives at the 155 
expense of small flood sensitivity (Galantowicz and Picton, 2021). All data layers were re-156 
projected to 90 m resolution geodetic coordinates prior to the RICorDE computation.  157 
 158 
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RICorDE is an algorithm originally developed for post-event analysis of fluvial flood events in 159 
Canada that produces gridded water depth estimates by incorporating Height Above Nearest 160 
Drainage (HAND) and cost distancing sub-routines to extrapolate edge values into an 161 
inundation region. By using the vertical distance above the permanent water surface computed 162 
in the HAND routine, RICorDE pre-filters egregious flood extent predictions and assumes a 163 
water surface slope matching the permanent water surface (rather than the flat surface 164 
assumed by similar methods). The slower, more complex RICorDE algorithm has been shown 165 
to produce more accurate depths maps when compared to faster, more disaster response-166 
focused solutions like the Floodwater Depth Estimation Tool (FwDET) (Bryant et al., 2022; 167 
Cohen et al., 2018). 168 
 169 
While no data was available to validate the performance of the depths estimate, visual 170 
inspection suggests results are less accurate in areas with higher elevation (>20 m), especially 171 
where drainageways are of comparable width to the resolution of the JRC water extent layer. 172 
These false negatives in the JRC layer propagate as positive bias in the HAND routine, which 173 
leads to higher elevation water surface predictions and similar positive bias in the depth values 174 
(see white arrow in Figure S3a).  175 

2.3 Combined Flood Depth Product 176 

The inland flood depth estimates from RICorDE are resampled from 3 arcsec to 9 arcsec, 177 
using the average resampling method (Rasterio library for Python), to match the resolution of 178 
the GeoClaw output. All flood depths are rounded to the nearest decimeter, their outline is 179 
cropped to the area of interest, and the final factual flood depth in each grid cell (shown in 180 
Figure 3a) is determined as the maximum of both products.  This accounts for both potentially 181 
partly obscured satellite imagery by clouds and potential underestimation by the numerical 182 
model. 183 

 184 
!! = #$%	(	!",!	, !$ 	)     (1) 185 

 186 
with d0 referring to the factual flood depth, and indices c and r referring to the coastal flood 187 
model (GeoClaw) and to the remote sensing data translated into flood depth using RICorDE, 188 
respectively. To derive the counterfactual flood depth dcf, we subtract the difference between 189 
modeled factual and counterfactual coastal flood depths from the combined factual flood 190 
depth: 191 
 192 

!"% = !! 	− 	(	!",! 	− 	!","%	)   (2) 193 
 194 

2.4 Displacement  195 

We use displacement data from the openly accessible Global Internal Displacement Database 196 
(IDMC, 2022). No granular information is available on the type of displacement, e.g., long-197 
term displacement or temporary evacuation, nor on the proportion of displacement by hazard 198 
type. We assume that people exposed to flood levels greater or equal than 100 cm are affected 199 
by the flooding and thus prone to displacement, following previous studies (Custer and 200 
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Nishijima, 2015; Kam et al., 2021). However, we also test the sensitivity of our results to this 201 
threshold choice by evaluating alternative water level thresholds of 10 cm and 50 cm.  202 
 203 
We first determine the flood extent with depths greater than the selected water level threshold 204 
and overlay it with population data to estimate the number of people affected. We use gridded 205 
population data from GHS-POP (Schiavina et al., 2019) for the year 2015, on 9 arcsec 206 
resolution. Population growth in Mozambique was 1.12 % between 2015 and 2019 (The World 207 
Bank, 2022); we hence multiplied all population grid cells with this factor, assuming a spatially 208 
equal population growth.  209 
 210 
We then calculate the ratio between the number of observed displacements, and the number 211 
of affected people from the factual flood estimate. This ratio, which may be thought of as an 212 
event-specific displacement vulnerability factor, is different for every tide assumption, 213 
reflecting the uncertainty about the actual flood extent and depth. We compute for every 214 
impact level threshold i and tide assumption h a displacement vulnerability factor vi,h by 215 
dividing the number of observed displacements Do by the total number of affected people of 216 
the factual scenario Ai,h,o: 217 
 218 

+',( =	 )!
*",$,!

		  (3) 219 

 220 
Multiplying the specific displacement vulnerabilities with the counterfactual numbers of 221 
affected people, we derive the number of people at risk of displacement in a world without 222 
climate change. This means that the difference between factual and counterfactual 223 
displacement estimates comes only from differences in the flood hazard, while exposure and 224 
vulnerability factors are held fixed. We achieve this by multiplying vi,t with the number of 225 
affected people of the counterfactuals Ai,h,cf, and estimate the expected number of 226 
displacements for each counterfactual scenario Di,h,cf: 227 
 228 

,',(,"% = +',( ∗ .',(,"%		 (4) 229 
 230 

2.5 High Wind Speed-Induced Displacements 231 

Even though disaster reports for TC Idai suggest flooding to be the main driver of 232 
displacement, high wind speeds may have locally intensified the impact of TC Idai (Figure S4) 233 
and be partially responsible for the observed displacements. We conduct an additional 234 
analysis where we assume that people affected by either flooding or wind (or both) were at 235 
risk of displacement with an equal vulnerability factor. We use a wind speed threshold of 96 236 
kn (50 m s⁻¹) for population exposure (Geiger et al., 2018), corresponding to the Saffir–237 
Simpson scale classification 3 (major hurricane). The resulting wind field is overlaid with 238 
gridded population data to compute the number of affected people, excluding those who are 239 
already affected by flooding.  240 
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3 Results 241 

3.1 Counterfactuals  242 

Constructing counterfactuals for sea level and TC intensity requires estimating the effect of 243 
historical climate change on these quantities. Total global mean sea level has risen by 244 
approximately 23 cm since the turn of the 20th century (Church and White, 2011); at a rate 245 
that has increased over time (Dangendorf Sönke et al., 2017). According to the IPCC, it is very 246 
likely that the rate of global mean SLR was 1.5 (1.1 to 1.9) mm yr⁻¹ between 1902 and 2010, 247 
and 3.6 (3.1 to 4.1) mm yr⁻¹ between 2006 and 2015 (Gulev et al., 2021). Nonetheless, 248 
regional changes in sea level may differ substantially from the global average due to shifting 249 
surface winds, the differential expansion of warming ocean water, and the addition of melting 250 
ice, which can alter the ocean circulation (Fox-Kemper et al., 2021). Additionally, increases in 251 
the amount of water stored on land (due to construction of dams and reservoirs), as well as 252 
land subsidence, have also affected total sea level, with their relative effects varying 253 
geographically (Church et al., 2004; Strauss et al., 2021).  254 
 255 
Long-term in-situ observational records of SLR are scarce in the Indian Ocean (Han et al., 256 
2010), hampering a precise detection of changes in sea level. For example, no active tide 257 
gauge stations can be found on the coast of Beira (Beal et al., 2019), with the nearest station 258 
located in Inhambane, Mozambique, 448 km south of Beira. However, regional historical SLR 259 
rates for Mozambique, derived from satellite imagery or models, are close to global mean 260 
estimates. IPCC rates of change in sea surface height (geocentric sea level) derived from 261 
satellite altimetry show regional SLR off the coast of Mozambique at around 4.0 mm yr⁻¹ for 262 
the period 1993–2012 (Church et al., 2013). Climate-induced SLR at the South-Eastern 263 
African coastline (1993 - 2015) is estimated at ~3.5 mm yr⁻¹ using a coastal-length weighted 264 
approach (Nicholls et al., 2021). Reconstructed sea level fields using global tide gauge data 265 
suggests global-averaged SLR at 1.8 ± 0.3 mm yr⁻¹ over the 1950-2000 period, with regional 266 
SLR off the coast of Mozambique at around 1.5 mm yr⁻¹  (Church et al., 2004). Han and 267 
colleagues (Han et al., 2010) estimate regional Mozambican SLR at approximately 1.2 mm 268 
yr⁻¹ between 1961-2008.  269 
 270 
Given that these regional estimates are close to the global mean estimate by the IPCC, we 271 
assume that total SLR near Beira is the same as the global mean, a comparable approach as 272 
by Irish and colleagues (Irish et al., 2014). In order to exclude trends induced by natural 273 
variability, particularly in sea level contributions from glaciers and ice sheets, we use estimates 274 
of global mean sea level rise attributable to anthropogenic climate change for 1900–2012 from 275 
Strauss and colleagues (Strauss et al., 2021).Their ensemble estimate is 6.6 to 17.1 cm, which 276 
we use to define counterfactual sea level parameters for the coastal flood model. This also 277 
implies assuming no substantial local effects of land subsidence and human-induced changes 278 
in land water storage through reservoir construction and groundwater extraction that would 279 
confound comparison with the global estimates. This is hard to verify, but can be motivated by 280 
findings that city subsidence occurs only in a small fraction of the world’s coasts (Nicholls et 281 
al., 2021).  282 
 283 
Tropical cyclones are projected to become more intense with rising temperatures (Knutson et 284 
al., 2015), which is in line with the theoretical understanding of the potential intensity theory 285 
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by Emanuel (Emanuel, 1987). Observed TC wind speed data in the South Indian Ocean basin 286 
shows that the maximum 10-minute sustained wind speed has been increasing by about 0.3 287 
kn (0.15 m s⁻¹) per year on average, over the period 1973-2019 (Figure 2). Prior to 1973, the 288 
rate of increase was likely smaller, though observational data is lacking. We make a 289 
conservative assumption corresponding to 50 years of increase at a rate of 0.2 kn (0.1 m s⁻¹) 290 
per year, resulting in a total difference in maximum wind speed of approximately 10 kn (5.1 m 291 
s⁻¹). For the case of TC Idai with maximum observed 10-minute sustained wind speeds of 105 292 
kn (54 m s⁻¹), this corresponds to a 10% reduction in maximum wind speed by removing 293 
climate change, which we adopt as a plausible assumption about a counterfactual TC de-294 
intensification. This is a larger change than when adopting an earlier model-based estimate of 295 
3.7% increase in maximum surface wind speed per 1 °C of sea surface temperature (SST) 296 
rise (Knutson and Tuleya, 2008). However, a trend analysis of global satellite data (1982–297 
2009) finds an observed increase in maximum intensity by 1.7 m s⁻¹ per decade (p = 0.06) in 298 
the south Indian Ocean (Kossin et al., 2013), yielding an increase by about 8.5% when 299 
extrapolating this rate of change over the 50 years prior to 2019; which is in closer agreement 300 
with our analysis. 301 

 302 

Figure 2: Annual means of maximum TC wind speeds in the South Indian Ocean 303 
(maximum 10-minute sustained wind speeds). Linear trend over the period 1973-2020; 304 
data from IBTrACS database (Knapp et al., 2010). 305 

3.2 Simulated flooding 306 

We calculate storm surge flood extent and depth for the factual (driven with observed wind 307 
speeds and sea levels) and counterfactual (reduced wind speeds and sea level) scenarios, 308 
using an open-source geophysical flow solver (see Sect. Methods). The contribution of tides 309 
to total sea water levels at the time of landfall is an important yet unknown model parameter. 310 
We test four different assumptions about astronomical tide levels, and find that the maximum 311 
astronomical tide shows the best agreement with simulated water levels from the Global Tide 312 
and Surge Model (Dullaart et al., 2021; Muis et al., 2020), followed by the monthly mean sea 313 
level from satellite altimetry without any tidal adjustment (Supplementary Figure S1). 314 
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 315 
Both factual and counterfactual coastal flooding are combined with inland flood depth 316 
estimates derived from satellite imagery in combination with an inundation depth estimation 317 
algorithm (Bryant et al., 2022), to obtain total inundation levels for Mozambique (Figure 3a). 318 
The difference between factual and counterfactual flooding is illustrated in the densely 319 
populated area of Beira (Figure 3b), the city where TC Idai made landfall and destroyed 90% 320 
of all houses according to some disaster reports (ReliefWeb, 2019). Differences in both flood 321 
extent and depth are observable between the factual (Figure 3c) and counterfactual scenario 322 
(Figure 3d). Notably, in a world without climate change, the area inundated by 100 cm or more 323 
is dramatically reduced. 324 
 325 

  

population 
count

 
 

  

flood 
depth 

[m]

 
Figure 3: Simulated flood extent for Mozambique; population distribution and 326 
inundation levels  for the greater area of Beira.  (a) Combined factual estimate of inland 327 
and coastal flooding (binary; flood/no-flood). White dashed box shows the area of interest in 328 
which flood exposure is computed. (b) Population distribution for the greater area of Beira. 329 
Flood extent and levels for (c) the factual scenario, and (d) the “counterfactual TC intensity + 330 
sea level rise (10.5 cm)” scenario. City neighborhoods of Beira (HDX, 2019) are indicated by 331 
orange lines and shoreline (Wessel and Smith, 1996) is represented by dashed white lines in 332 
(b), (c), and (d); satellite image background by © Google Maps (Google Maps (b), 2022).  333 
 334 

3.3 Displacement 335 

In the next step, we investigate how the factual and counterfactual flood estimates translate 336 
into population at risk of displacement for the whole of Mozambique. Our analysis shows that 337 
the intensification of TC wind speeds leads to an increase in flood affected people and, 338 
consequently, in displacements by up to 3.6%, while counterfactuals regarding the sea level 339 
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lead to only small changes (Figure 4). A combination of both counterfactuals only slightly 340 
exceeds the range as in contrast when considering the TC de-intensification alone. Despite 341 
the large uncertainty regarding SLR since 1900, the difference in the number of people 342 
affected (or displaced) is rather marginal; being less than 1% between the largest and the 343 
smallest SLR estimate. Our results highlight that the tide assumption plays a major role. The 344 
minimum and mean tide lead to marginal changes in affected/displaced people, in contrast to 345 
the maximum astronomical tide and monthly mean sea level from satellite altimetry, which 346 
show a median change in 3.1% and 3.5%, respectively. Given the high number of affected 347 
people, already small changes in the counterfactual scenarios lead to high changes in 348 
absolute numbers. The coupled effect of higher wind speeds and higher sea level increases 349 
the number of affected people and displacements by up to 43,300 and 16,500 (maximum tide) 350 
and 44,300 and 17,100 (monthly mean), respectively. Results regarding impact flood levels of 351 
10 cm and 50 cm are displayed in the supplementary material (Figure S5 and S6), showing 352 
even higher changes for the counterfactual scenarios of up to 69,800 displacements (17.1%).  353 
 354 
We assume that high wind speed caused only a marginal fraction of displacements, following 355 
disaster reports, media coverage and experience from other events; as an extreme example, 356 
wind by Hurricane Sandy caused less than 0.01% of the overall damage (Strauss et al., 2021). 357 
Nonetheless, in an additional sensitivity analysis, we also account for the number of people 358 
affected by high TC wind speeds of 50 m s⁻¹ or above (Sect. Methods). Our analysis reveals 359 
that the number of people affected not by flooding (maximum tide assumption, 100 cm impact 360 
threshold) but by high wind speeds ranges between 354,400 to 357,400 in the factual 361 
simulation. In the counterfactual, even the maximum wind speed attained in any grid cell 362 
outside the flooded area drops from 51.5 m s⁻¹ to 46.3 m s⁻¹, i.e. below the above-mentioned 363 
threshold; thus, no people are counted as affected. If the displacement vulnerability factor to 364 
high wind speed had been the same as to flooding, then the counterfactual would imply 365 
109,200 to 111,500 displacements, or 22.8 to 23.3% of the total displacement, attributable to 366 
climate change.   367 
 368 
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 369 
Figure 4: Simulated affected people (top), displacements (middle) and percentile 370 
change (bottom) for the 100 cm impact threshold.  Three counterfactual scenarios are 371 
shown: lower sea level (“cf SLR”)), de-intensification (“cf wind”), and a combination of both (“cf 372 
SLR + wind”). Additionally, a variety of counterfactual sea levels as well as a set of 373 
astronomical tides is presented, covering minimum (“min”), mean (“mean”), and maximum 374 
(“max”) as well as monthly mean sea level from satellite altimetry (“no”). Bold dashed line in 375 
the middle panel shows the number of observed displacements. Percentile changes in 376 
affected people and displacements are the same. The second quartile Q2 (median) of the box 377 
plot is shown in orange, “whiskers” are placed at ±1.5 * interquartile range (Q3-Q1). 378 
 379 

4 Discussion and conclusions 380 

With more than one degree of global warming, most, if not all, extreme weather events now 381 
can be assumed to bear some imprint of climate change. By extension, this is also true for the 382 
humanitarian crises induced by catastrophic storms, floods, or droughts. However, while 383 
economic damages from climate change have been attributed both in case studies and global 384 
studies (Frame et al., 2020b, 2020a; Sauer et al., 2021; Strauss et al., 2021), little is known 385 
about the extent to which climate change has already exacerbated human displacement. Our 386 
modeling study of TC Idai suggests that climate change may have induced about 17,000 387 
additional displacements from this one event. This is primarily due to the intensification of TC 388 
wind speed inducing a more powerful storm surge; and to a lesser extent due to sea level rise 389 
providing a higher baseline for the storm surge.  390 
 391 
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Our results likely underestimate the full contribution of climate change to displacement 392 
associated with TC Idai, because we solely addressed the effect of climate change on coastal 393 
flooding, neglecting changes in inland flooding. Between March 3 and 17, heavy precipitation 394 
between 200-400 mm was registered for Beira City and the region, with upstream sections of 395 
the Pungwe river basin exposed to more than 600 mm (Probst and Annunziato, 2019). With 396 
growing evidence that climate change not only affects precipitation intensity (Fowler et al., 397 
2021; Guerreiro et al., 2018; Scherrer et al., 2016) but also continental-scale changes in fluvial 398 
flood discharge (Blöschl et al., 2019; Gudmundsson et al., 2021), it is likely that in a world 399 
without climate change, the river flood magnitude would have been smaller, and even less 400 
people would have been exposed than in our coastal-only counterfactual. Quantifying this 401 
additional effect would require a river flood model capable of reproducing the observed flood 402 
extent and associated inundation depths, and ideally  coupled with a coastal flood model to 403 
capture the interaction between river flood and storm surge. Even though globally-applicable 404 
frameworks for compound flood hazard modeling are under construction, and have recently 405 
been tested for TC Idai (Eilander et al., 2022), evaluations of fluvial flood models reveal 406 
important shortcomings in data-scarce regions such as Mozambique (Bernhofen et al., 2018; 407 
Mester et al., 2021). Quantifying the role of river flooding in TC-induced displacement thus is 408 
a timely challenge.  409 
 410 
Our main analysis also assumed no direct effect of high wind speeds on displacement, lacking 411 
clear evidence for substantial displacement due to high winds alone. Our additional sensitivity 412 
analysis suggests that changing this assumption could increase the number of displacements 413 
attributable to climate change considerably. Given this potentially large effect, and our limited 414 
understanding of the relative roles of different drivers of displacement in general, the specific 415 
vulnerability to displacement from different types of hazard should be the subject of future 416 
studies. Moreover, assuming that displacement can occur already at inundation depths of less 417 
than 100 cm also leads to higher estimates of climate change-attributable displacement, 418 
according to our sensitivity analysis. Again, a better understanding of vulnerability beyond 419 
hard thresholds will be critical to refine risk assessments.  420 
 421 
We did not change storm track or size in our counterfactual simulations. While storm tracks 422 
may be affected by climate change (Knutson et al., 2019), we assume that Beira has not 423 
become more or less likely as a landfall site. Mean storm size is found to increase 424 
systematically with the relative sea surface temperature (Chavas et al., 2016), although 425 
numerical simulations suggest that projected median sizes remain nearly constant globally 426 
(Knutson et al., 2015). Assuming increases in storm size due to climate change would again 427 
result in higher estimates of attributable displacements in our analysis. Furthermore, 428 
uncertainties regarding the population and observatory data, such as the satellite imagery, as 429 
well as the underlying digital elevation model (DEM), used for both the inland flood depth 430 
estimation and the coastal flood model, should not be neglected (Hawker et al., 2018). 431 
 432 
By design, in our attribution study, we assumed a fixed population distribution in both factual 433 
and counterfactual simulations, as well as a fixed, empirically determined displacement 434 
vulnerability factor, and only investigated changes in displacement risk following from changes 435 
in the physical characteristics of TC Idai and its impacts. Assessments of future risks - or of 436 
past impacts - should not only take into account the intensification of physical hazards, but 437 
also increases in exposure (Kam et al., 2021); as well as potential changes in vulnerability due 438 
to social, economic, or technological developments. Changes in vulnerability have been 439 
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studied with respect to economic damages and fatalities (Jongman et al., 2015; Sauer et al., 440 
2021), but not for displacement.  441 
 442 
Here, we have chosen a storyline approach for the impact attribution instead of a more 443 
traditional probabilistic attribution approach (Philip et al., 2020; Titley et al., 2016), as for 444 
instance previously employed to attribute heavy precipitation of Hurricane Harvey 445 
(Oldenborgh et al., 2017) to climate change. One reason is that for Mozambique neither the 446 
complete time series of rainfall nor the high station density required by a probabilistic approach 447 
(van Oldenborgh et al., 2021) are available. Reanalysis products for precipitation could be 448 
used as an alternative, however, their quality depends on geographic location, so the use of 449 
multiple reanalysis and/or observation products is recommended (Angélil et al., 2016). Further, 450 
in contrast to the probabilistic approach, the storyline approach allows us to investigate the 451 
driving factors involved, as well as their plausibility (Shepherd et al., 2018). Finally, framing 452 
the risk of tropical cyclones in the context of climate change in an extreme event-oriented 453 
rather than a probabilistic manner allows us to assign absolute numbers of attributable 454 
displacements, which raises risk awareness in a more tangible way. 455 
 456 
Our study expands the scope of extreme event impact attribution to include displacement as 457 
a societal impact dimension. In general, due to the lack of calibrated regional models and 458 
gauge stations, only few attribution studies (Luu et al., 2021; Takayabu et al., 2015) focus on 459 
storms - or any extreme weather events, for that matter - in low-income countries. This not 460 
only limits our understanding of climate change effects on extreme events from a global 461 
perspective, but also biases geographically the amount of knowledge and information 462 
available to inform risk management and adaptation strategies (Otto et al., 2020). 463 
Mozambique, like many countries, is exposed not only to TCs but also other climate-related 464 
hazards, such as droughts, and at the same time facing socio-economic challenges, making 465 
it all the more important to understand and anticipate risks in a changing climate. 466 

Code availability 467 

The source code for this study is available from 468 
https://github.com/BenediktMester/TC_Idai_attribution. 469 
 470 

Data availability 471 

Satellite imagery is used with the permission of Atmospheric and Environmental Research & 472 
African Risk Capacity. Output of the flood depth algorithm, GeoClaw results, and TC Idai wind 473 
speed files can be accessed at https://zenodo.org/record/6907855 (Mester et al., 2022). GHS 474 
gridded population data is available at https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-475 
ghs_pop_gpw4_globe_r2015a#dataaccess. 476 
National borders of Mozambique were obtained from https://gadm.org/data.html. For the 477 
trendline analysis of annual means of maximum wind speeds we use IBTraCS Version 4 478 
database, accessible at https://www.ncei.noaa.gov/data/international-best-track-archive-for-479 
climate-stewardship-ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc. 480 
 481 
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All data used for the figures are publicly available. Maps were generated with QGIS, which 482 
can be downloaded at https://www.qgis.org/. Satellite imagery background by © Google Maps 483 
can be accessed via http://mt0.google.com/vt/lyrs=s&hl=en&x={x}&y={y}&z={z}. We used 484 
IBTrACS Version 4 to extract the trajectory data of tropical cyclone Idai, availabe at 485 
https://www.ncei.noaa.gov/products/international-best-track-archive?name=ib-v4-access. 486 
Mozambique admin level 4 shapefiles for Beira are available at 487 
https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-488 
neighbourhood-boundaries. GSHHG shoreline data can be accessed via 489 
https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 490 
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